UNIT-1

ENERGY & SOURCES OF ENERGY

Vibha Masti

- · OPEC (Organisation of Petroleum Exporting Countries)
- · conventional, non-conventional energy sources
- · Renewalde wind, solar, tidal etc consumption does not deplete source can utilise unlimited amount
- Non-renewable petroleum
 consumption depletes source
 cannot utilise indefinitely
- · OPEC started restricting petroleum export · 19x increase in cost; 1973
- · per capita energy consumption

Uassification of Resources

1) Usability

· Primary

energy yield ratio: energy produced (utilication)
energy spent in extraction

raw form

* Intermediate

already transformed from raw sources

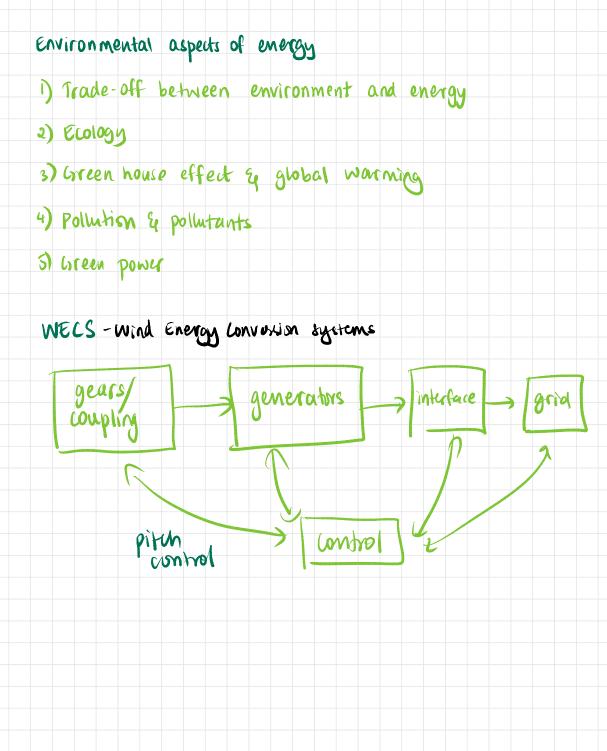
	•	Sec	ondarg	
			utilised energy	
	2)	Long	term availability	
			enewable ⁹	
		• y	non-renewable	
	3)			
		٠ (1	ommercial	
			on-commercial	
	4) 1	iradi	tional	
		• (tional onventional	
		o y	non-conventional	
			•	
- "	lype	s of	Coal	
		Bih	minous	2) Anthraute
		'	soft coal	
			soft coal 40-80/carbn	· hardest coal · 80-90% carbon
			· calorific value high	high quality
				high quality less pollution (blue flame)
				· Jammy wachmie
	S) Pea	Ł	, , , , , , , , , , , , , , , , , , , ,
			· more moisture, impurities	4) Lignite
			40-56%	7 3 1
			too much pollution	· Brown coal
			to be transformed to	. 40-55% c
			Bituminous/Anthracite	- Dark black/brown
			- continual Williams 6	

Oil & Natural gas

- · gas: more temp, pressure · oil & gas produced together
- · natural gas: CH4, CH3413, odourless, highly flammable · no Sulphur

Disadvantages

- · polunton


- · global warming · sea level up 8-8 inches · temperature up by 0.5°C · Marka, Russia · coral reefs
- Ween Power

 - eco-friendly and non-polluting resources
 power generated with no pollution
 solar, wind etc
- Advantages & Disadvantages of conventional energy

Advantages

- · low cost
- · high energy efficiency · well built technology for extraction (comfortable)
- Disadvantages

 - · polluting · non-renewable

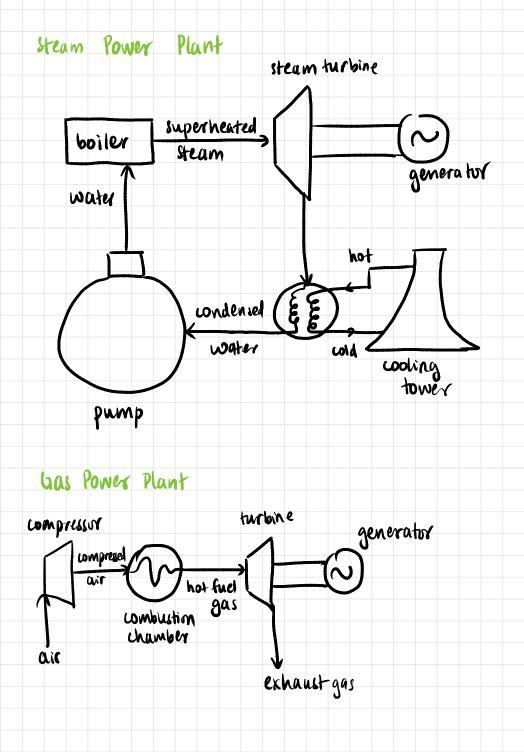
Generator	
ODC -> low	
2) Synchronous - coal, fossi reluctance motor gold requirements	I also; problems my wind spee
3 Induction generators - n excitation en	
Operations of WECS O Fixed Scheme one speed	
-> one spud	- 2 gear ratios
Conser	Jew raying
wind	
D var scheme change f mrt wi	nd speed

Biomas (i) hel wood 16-20 MJ/hg (v) charcoal 30 MJ/kg iii) fuel pellets and brignettes (iv) bio-diesel Jatropho & learny ? (v) Bo Manol 25% (vi) Biogas (vir) Producer gas · digester Sources 1. Foreits 2 Agr res s. wops 4. aquatic plants 5. whom waste

i) long term

2) 27.55 days

3) prane


n) complex interactions of F

Power Plants

mermal Power Plants

CE - TE - ME - EE

- i) wal-based
- 2) has-based

Disadv. of TPP Adv- of TPP · low cost · running cost · less space · maintainance cost · large amounts of power · 65% of India's needs · pollution · non-renewable · Bry would based · storage of wal ·MP Nuclear Power Plant · heat to produce superheated steam for turbine nuclear reactor condensor Components 1. Fuel $q_2 V^{235}$, $q_2 V^{238}$, $q_2 V^{233}$, $q_4 Po^{239}$ slow moving neutrons → Ba

a	. M	oderator
	•	to absorb k.E. of neutrons/slow down
		020, H2,02, N2,C, Be
	٠	H ₂ O chriched Uranium (q ₂ U ²³⁵)
		absorbs too many neutrons
		fine with enriched Uranium
3-	Conh	rol rods
		start reactor
		maintain
		stop during emergency
	•	abento neutrons
	•	cd, B, Hf
	01 -	1.000
4	sne	ilding
		neutrons, & rays
		steel + concrete
		Steel woncrete
		50-60 few metres

5. Reactor vessel

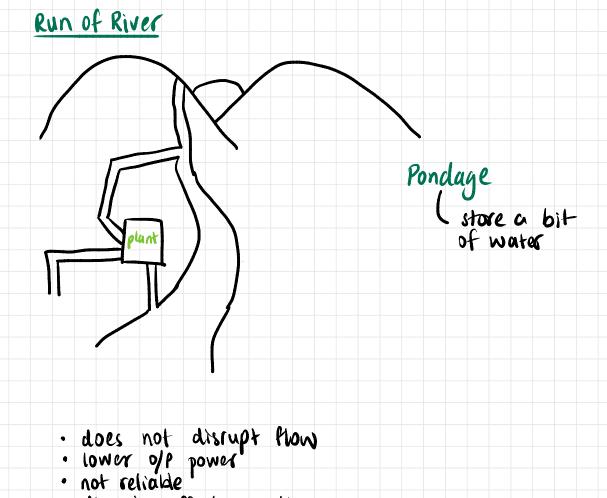
- · core, reflector, sheid · entry / exit of coolant · withstand 200 bar

Types of Reactors

- 1) Newton energy 2) fuel
 - · fast · thermal · natural · enriched U
- 3) moderator 4) coolant
 - water
 gas
 - · D20 · H20 · graphite · Be

Pressurised water Reactor CPWR)

- · fuel : enriched U, moderator : 420 · water becomes radioactive


 - · steam not radioactive

Boiling Water Reactur (BWR)

· steam generated inside reactor

Heavy Water Cooled & CANDU Reactor Canadian Deutrerium · fuel natural V Uranium · moderator: D2D · wolant: D2D · controller . D20 · no control rods water cools entire power plant
 Dz0 and Hz0 exchange heat at heat exchanger Gas Cooled Reactor CGLR) · wolant - gas Liquid Metal Reactor · fuel: enriched U high specific heat, BP
T = 540°C
woolant: Na, K Fast Breeder Reactor · fuel: enriched U or Plutonium · casing: depleted U · neutrons go to depleted U and turn it into fissable U no moderator; coolant: liquid metal
 high P.D. = 430 km/litre of core

HYDRO POWER PLANTS ~18% of world's renewable energy 1) Impounding Facity · dams, powerplants, reservoirs 2) Run of River (ROR) / Diversion 3) Pumped Storage Impounding Facility transformer teservoil powerhouse generator penstock dam downstream outlet chraft intake tube

· diversion affects aquatic ecosystem

small (< lomw)
mini (< loww)
mino (< lookw)
pico (< skw)

Small Hydropower Plants (SHPs) Fuel cells